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Discrete Periodic Schrödinger Operator

Let V : Zd → R be a periodic function.

Schrödinger Operator

A discrete periodic Schrödinger operator H = V +∆ acts on
functions f : Zd → C as follows, for all n ∈ Zd :

Hf (n) = V (n)f (n) +
∑

|n−m|=1

f (m).

Let q = (q1, . . . , qd) ∈ Zd , and let qZ = q1Z× · · · × qdZ.
V : Zd → R is a qZ-periodic potential if

V (n + qiei ) = V (n)

for each i = 1, . . . , d , where qiei = (0, . . . , 0, qi , 0, . . . , 0).
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Discrete Periodic Schrödinger Operator Examples

Schrödinger Operator

A discrete periodic Schrödinger operator H = V +∆ acts on
functions f : Zd → C as follows, for all n ∈ Zd :

Hf (n) = V (n)f (n) +
∑

|n−m|=1

f (m).

For example, when d = 1, we get the classic operator

Hf (n) = V (n)f (n) + f (n − 1) + f (n + 1).

When d = 2 and n = (n1, n2):

Hf (n) = V (n)f (n) + f (n1 − 1, n2) + f (n1 + 1, n2)

+f (n1, n2 − 1) + f (n1, n2 + 1).

Matthew Faust Floquet Theory for Discrete Periodic Operators



The Spectrum: Case of d = 1, V (n) Z-periodic.
We wish to study the spectrum σ(H) of H = V +∆ on ℓ2(Zd).
Let us consider the case when d = 1 and V (n) = V .

Let F : ℓ2(Z) → L2(T) be the Fourier transform

f (n) → f̂ (z) =
∑
a∈Z

f (n + a)z−a.

By Parseval’s identity, F is unitary, and so σ(H) = σ(FHF−1).
It is easy to see that F (f (n + a)) = zaF (f (n)). Thus for z ∈ T,

(FHF−1(f̂ ))(z) = V f̂ (z) + z−1f̂ (z) + zf̂ (z).

It is easy to show that λ ∈ σ(FHF−1) when λ = V + z−1 + z for
some z ∈ T.

Equivalently, σ(H) = {V + 2 cos(k) | k ∈ R} = [V − 2,V + 2].

Matthew Faust Floquet Theory for Discrete Periodic Operators



Floquet Transform for a qZ-periodic Potential

Let Q =
∏

qi , and consider an arbitrary d and a qZ-periodic
potential V (n) on Zd . Define

W = {ω ∈ Zd : ωi ∈ {0, . . . , qi − 1}},

so each ω ∈ W labels a unique orbit ω + qZ in Zd/qZ.
The Floquet transform

F : ℓ2(Zd) →
(
L2(Td)

)W
is given by

f (n) 7→ f̂n(z) =
∑
a∈Zd

f
(
n + a q

)
z−a,

where za = za11 · · · zadd and a q = (a1q1, . . . , adqd). Similar to the
standard discrete Fourier transform, F is unitary.
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Floquet Transform for a qZ-periodic Potential. Part II

Recall: W = {ω ∈ Zd : ωi ∈ {0, . . . , qi − 1}}.
For any n ∈ Zd , n = ω + aq where ω ∈ W and a ∈ Zd , we have

f̂n(z) = f̂ω+aq(z) = za f̂ω(z), where f̂ω(z) =
∑
g∈Zd

f
(
ω+g q

)
z−g .

Hence, F acts as a Fourier transform on each orbit ω + qZ,
ω ∈ W .
For z ∈ Td , the transformed function f̂ (z) can be viewed as a

Q-dimensional vector in
(
L2(Td)

)W
:

f̂ (z) =
(
f̂ω(z)

)
ω∈W .
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Floquet Transform: qZ-periodic Potential. Part III

W = {ω ∈ Zd | ωi ∈ {0, . . . , qi − 1}}, f̂ (z) =
(
f̂ω(z)

)
ω∈W

.

Let Ĥ := FHF−1. For z ∈ Td and ω ∈ W , as each n = v + aq for
some v ∈ W and a ∈ Zd and f̂v+aq(z) = za f̂v (z),

Ĥ f̂ω(z) = V (ω)f̂ω(z) +
∑

|v+aq−ω|=1,v∈W

za f̂v (z).

So Ĥ sends f̂ω(z) to a linear combination of the coordinates of
f̂ (z) with coefficients in R[z±1 , . . . , z±d ].

Thus, there exists a matrix Q × Q matrix H(z) such that

Ĥ f̂ (z) = H(z)f̂ (z) =⇒ Ĥ =

∫ ⊕

Td

H(z) dz ,

and so σ(H) = σ(Ĥ) = {σ(H(z)) | z ∈ Td}.
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Example: V (n) is (1, 3)Z = Z× 3Z-periodic.

Let W = {(0, 0), (0, 1), (0, 2)}. Remark that f̂ω+aq(z) = za f̂ω(z)
and H(z)f̂ω(z) = V (ω)f̂ω(z) +

∑
|v−ω|=1 f̂v (z).

We find that H(z) acts on f̂ (z) as follows:
H(z)f̂(0,0)(z) = V (0, 0)f̂(0,0)(z)+ f̂(−1,0)(z)+ f̂(1,0)(z)+ f̂(0,−1)(z)+ f̂(0,1)(z)

H(z)f̂(0,0)(z) = (V (0, 0) + z−1
1 + z1)f̂(0,0)(z) + z−1

2 f̂(0,2)(z) + f̂(0,1)(z),

H(z)f̂(0,1)(z) and H(z)f̂(0,2)(z) can be obtained in a similar way.

We find that,

H(z) =

V (0, 0) + z−1
1 + z1 1 z−1

2

1 V (0, 1) + z−1
1 + z1 1

z2 1 V (0, 2) + z−1
1 + z1


Given the matrix H(z), we let D(z , λ) := det(H(z)− λI ).
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The Dispersion Relation

The Dispersion relation is
{(z , λ) ∈ (T)d × R | D(z , λ) = 0}.
The Fermi variety at λ0 is given by
z ∈ Td such that D(z , λ0) = 0.
Let λi (z) be the ith smallest
eigenvalue of H(z).

When z ∈ T, H(z) is Hermitian and thus has real spectrum.
Algebraically, we can study the extrema of the band functions,
reducibility of D(z , λ) (and, D(z , λ0)), and more.

In many cases, these algebraic properties have spectral
consequences. E.g., the dispersion relation is always irreducible and
so σ(H) has no pure point spectrum.
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Past Work on H

1 Gieseker, Knörrer, and Trubowitz (1993 Academic Press) showed
that the Fermi varieties are always irreducible for a
pZ× qZ-periodic potentials.

2 Kuchment and Vainberg (2000 Comm. PDE) showed that
irreducibility of the Fermi varieties implies the absence of embedded
eigenvalues.

3 Filonov and Kachkovskiy (2018 Acta Math.) there exist q ∈ Zd for
which the band edges are degenerate for all qZ-periodic potentials.

4 Liu (2022: Geom. Funct. Anal.) generalized the results of GKT this
to higher dimensions.

5 Liu (J. Anal. Math. 2022) showed that irreducibility of the
dispersion relation is a key component in proving quantum
ergodicity.

6 Filonov and Kachkovskiy (2024 Comm. Math. Phy.) expanded
upon the 2018 paper providing more examples as well as proved for
most q ∈ Zd the band edges are non-degenerate.

7 Much more.. (e.g. Kappeler’s isospectrality results).
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Periodic graphs

Definition

A Zd -periodic graph Γ is a graph equipped with a free action of Zd

with finitely many orbits on its vertices V(Γ) and on its edges E(Γ).

Let W ⊂ V(Γ) contain a single vertex from each orbit of V(Γ)/Zd .
We call W a fundamental domain.
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Discrete Periodic operators:

A label c = (V ,E ) is a pair of Zd -periodic functions:
V : V(Γ) → R, E : E(Γ) → R.

g : V(Γ) → C.

Discrete periodic operator:

(Lg)(u) := V (u)g(u) +
∑

(u,v)∈E(Γ)

E ((u, v))(g(v)).

We wish to study the spectrum of L on ℓ2(V(Γ)).
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The discrete periodic Schrödinger operator

When E (e) = 1 for all e ∈ E(Γ), as

(Lg)(u) := V (u)g(u) +
∑

(u,v)∈E(Γ)

g(v).

We have that when Γ is the grid graph, H = L.

W = {(ω1, ω2) ∈ Zd | ω1 ∈ {0, 1, 2}, ω2 ∈ {0, 1}}.
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The General Floquet Matrix

Floquet theory reveals that the generalized eigenfunctions of L are
quasi-periodic functions with Floquet multiplier z , for each z in Td :

g(u + a) = zag(u) for all a ∈ Zd , u ∈ V(Γ).

Such g are determined by their values on W , and so we can
represent each as a finite vector {g(u)}u∈W .

(Lg)(u) = V (u)g(u) +
∑

e=(u,v+a)∈E(Γ),v∈W

E (e)zag(v).

Thus, L acts on {g(u)}u∈W as multiplication by the W ×W
matrix

L(z)u,v = coefficient of g(v) in (Lg)(u).

Collecting the eigenvalues of L(z) over z ∈ Td yields the spectrum.
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Example: Hexagonal Lattice

u ax + u

ay + u

v−ax + v

−ay + v

ax

ay

Let g be a generalized eigenfunction
of L with multiplier (x , y) ∈ T2, and
let E = 1.

Lg(u) = V (u)g(u)
(1 + x−1 + y−1)g(v)

Lg(v) = (1 + x + y)g(u)
+V (v)g(v)

Collecting coefficients, we obtain the Floquet matrix:

L(x , y) =

(
V (u) −1− x−1 − y−1

−1− x − y V (v)

)
We let D(z , λ) = det(L(x , y)− λI ).
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The Dispersion Relation

x

y

λ

As before, the dispersion relation is
the vanishing set of D(z , λ) on
(T×)d × R.

As we study more general models, more exotic spectral phenomena
can occur.
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Example: Flat Bands in the Lieb Lattice

The Lieb lattice. The dispersion relation of the Lieb
lattice when V = 0.
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Some Past Work on Discrete Periodic Operators

1 Do, Kuchment, Sottile (J. Math. Phys. 2020): either
non-degeneracy or degeneracy of the band edges occurs generically.
Proved the nondegeneracy conjecture for a class of graphs.

2 Fillman, Liu, Matos (J. Func. Anal. 2022) studied the reducibility
of the dispersion relation for long-range operators. Concluded
irreducibility for all potentials for many models.

3 Sabri and Youssef (J. Math Phys. 2023), provided a class of graphs
which can exhibit flat bands.

4 F. and Sottile (J. Spectr. Theory 2024) provided a bound on the
number of isolated extrema of the band edges for any graph. Used
this to extend the results of DKS to many more related models.

5 Fillman, Liu, Matos (J. Func. Anal. 2024) provided an effective
criteria to prove generic irreducibility of the Fermi varieties of many
graphical models.

6 Much more...
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Recent Result:

Theorem F.-Liu (TBA 2025)

If V and E live outside of a particular measure 0 set, then the
dispersion relation of a discrete periodic operator has no flat bands.

Matthew Faust Floquet Theory for Discrete Periodic Operators



Related Surveys and Books:

1 Peters, Algebraic Fermi curves, Astérisque, Séminaire
Bourbaki, 1990.

2 Gieseker, Knörrer, and Trubowitz, The Geometry of Algebraic Fermi
Curves, Academic Press, Inc, 1993

3 Kuchment, An overview of periodic elliptic operators, Bull. Amer.
Math. Soc. (2016)

4 Liu, Topics on Fermi varieties of discrete periodic Schrödinger
operators, J. Math. Phys. (2022).

5 Damanik and Fillman, One-dimensional Ergodic Schrödinger
Operators—II. Specific Classes, Grad. Stud. Math. AMS, 2024

6 Kuchment, Analytic and algebraic properties of dispersion relations
(Bloch varieties) and Fermi surfaces. What is known and unknown,
J. Math. Phys. (2023).

7 Shipman and Sottile, Algebraic aspects of periodic graph operators,
arxiv preprint, (2025).

Matthew Faust Floquet Theory for Discrete Periodic Operators



End

Thank you for listening.
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